...
チャンネルは、Nukeで直接可視化したり、レンダリングすることができるほか、Eddyや他のツールでの後処理向けにOpenVDBボリュームとしてエクスポートおよびインポートすることができます。
...
...
アンカー | ||||
---|---|---|---|---|
|
スカラーチャンネル
スカラーチャンネルは、空間の各ポイントで1つの浮動小数点小数値を保存します。スカラーチャンネルのシミュレーションの例としては、温度や圧力、密度などがあります。
...
アンカー | ||||
---|---|---|---|---|
|
符号付き距離チャンネル
(Signed Distance FieldsまたはSDFともよく呼ばれる) 符号付き距離チャンネルは、サーフェスを表現するために使用することができるタイプのチャンネルです。
...
情報 | ||
---|---|---|
| ||
修正/歪曲されたSDFチャンネルを可視化する場合、Eddyは、チャンネルをサーフェスとして可視化すべきかどうか、自動的に判断できないことがあります。その場合、「Force SDF」チェックボックスにチェックを入れて、SDFジオメトリとしてデータを変換するように、Eddyに指示を出す必要があります。 |
フォグボリュームとして可視化されたスカラーチャンネル | 符号付き距離チャンネル |
...
アンカー | ||||
---|---|---|---|---|
|
ベクトルチャンネル
ベクトルチャンネルは、空間の各ポイントで3つの浮動小数点小数値を保存します。ベクトルチャンネルの例としては、速度、渦度、カラーなどがあります。
...
アンカー | ||||
---|---|---|---|---|
|
ベクトルチャンネルのトランスフォーム
ベクトルチャンネルにトランスフォームを適用する場合(例: 回転やスケール)、各ポイントのベクトルの値も変換する必要があります。例えば、速度チャンネルを回転させると、速度値自体の方向も回転します。ノードは、可能であれば、トランスフォームタイプを自動的に決定しますが、時には手動で指定する必要があり、上書きすることができます。
...
- Vector: デフォルトのトランスフォームタイプです。ベクトル値は、適用されたトランスフォームにより回転し、スケールします。速度, フォース, 方向チャンネルは、すべてこの方法でトランスフォームする必要があります。
- Normal: 法線ベクトルは、標準のベクトルと同じ方法で回転により影響を受けますが、スケール時は挙動が異なります。これは、 E_MeshToVolume ノードによりメッシュからボクセル化される法線ベクトルチャンネルに使用されたり、E_FiniteDifferenceノードから計算された勾配に使用されます。
- Coordinate: 座標ベクトルは、トランスフォームによる影響を受けません。これは、カラーチャンネルやテクスチャ座標チャンネルなどに使用されます。
ベクターチャンネル |
...
アンカー | ||||
---|---|---|---|---|
|
Channel Sets
Eddyのチャンネルセットは、単なるチャンネルの集まりで、各チャンネルには名前が与えられています。チャンネルセットは、elements, cache loadersまたはvoxelizersのような複数のチャンネルを生成するいろいろなノードから出力されます。
チャンネルセットから個別のチャンネルを抽出するには、E_Channel ノードを使用します。
...
アンカー | ||||
---|---|---|---|---|
|
Channel Setのウィジェット
チャンネルセットのウィジェットは、チャンネルセットを出力するノードのほとんどのプロパティパネルに表示されます。これにより、個別のチャンネルでいくつかのプロパティを指定したり、デフォルトのチャンネル定義を追加することができます。これは、E_CacheLoaderノードに表示されているウィジェットです。
...
新しいデフォルトチャンネルをウィジェットに追加するには、ウィジェットの下部にあるテキストボックスにチャンネル名を入力し、新しいチャンネルのタイプを選択して、+のアイコンをクリックします。
...
アンカー | ||||
---|---|---|---|---|
|
Interpolators
離散的な3Dグリッドから自身の値をサンプリングするチャンネルでは、補間方法を指定する必要があります。補間は、グリッドで隣接する値をどのように組み合わせて最終値を生成するかを記述します。
...
情報 | ||
---|---|---|
| ||
補間モードは、チャンネルを入力として使用するノード、例えば シェーダーノードの速度および知覚される品質に影響を与えるため、レンダリングに影響します。 |
...
アンカー | ||||
---|---|---|---|---|
|
補間方法の選択
使用に最適な補間は、残念ながら問題にもよりますが、滑らかな結果を確保する必要がない限り、一般的にはTrilinearを使用します。滑らかな結果を確保したい場合は、High orderの方法を推奨します。Trilinearでは満足な結果が得られず、High orderでは遅すぎる場合、B-Spline, TricubicまたはMonotonic tricubicを使用すると、速度と品質間の妥協を図ることができます。
...
アンカー | ||||
---|---|---|---|---|
|
補間のオーバーシュート
非線形補間では、データのオーバーシュートまたはアンダーシュートが発生するおそれがあります。これはつまり、既知の2つのデータポイント、例えば、0と1の間の値を推定する場合、推定値は、0より小さい、または1より大きくなることがあります。つまり、値の区間の外側にある値が補間されるということです。この現象は、補間されるデータの値が急激に変化し、問題となる可能性のある領域で発生します。補間される値が密度などを表している場合、補間によってこの状況では無効になる0未満の値が生成されることがあります。
...
このため、このような場合にはオーバーシュートを発生させない補間方法を使用することをお勧めします。滑らかさが一番の関心事でない場合はTricubicを、滑らかさが重要な場合は、High orderの方法を使用してください。滑らかさを最優先する場合は、B-SplineまたはMonotonic tricubicが最適な選択肢です。
...
アンカー | ||||
---|---|---|---|---|
|
合成操作
TODO: マスクする、マスクの反転、最小/最大、加減の例
...
アンカー | ||||
---|---|---|---|---|
|
SDFの合成
TODO: 最小/最大のSDF挙動の例